Abstract

Radiative transfer models of the Earth’s atmosphere play a critical role in supporting Earth Observation applications such as vicarious calibration. In the solar reflective spectral domain, these models usually account for the scattering and absorption processes in the atmosphere and the underlying surface as well as the radiative coupling between these two media. A range of models is available to the scientific community with built-in capabilities making them easy to operate by a large number of users. These models are usually benchmarked in idealised but often unrealistic conditions such as monochromatic radiation reflected by a Lambertian surface. Four different 1D radiative transfer models are compared in actual usage conditions corresponding to the simulation of satellite observations. Observations acquired by six different space-borne radiometers over the pseudo-invariant calibration site Libya-4 are used to define these conditions. The differences between the models typically vary between 0.5 and 3.5% depending on the spectral region and the shape of the sensor spectral response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call