Abstract
Abstract The effects of cloud geometry and inhomogeneity on the radiative properties of cirrus clouds are investigated by using the successive orders of scattering (SOS) approach for radiative transfer. This approach is an integral solution method that em be directly applied to specific geometry and inhomogeneous structure of a medium without the requirement of solving the basic differential radiative transfer equation. A specific interpolation scheme is developed for the intensity and source function iterations to reduce the computation effort, and its accuracies are checked with existing results from the plane-parallel adding-doubling method, a number of two-dimensional models, and the three-dimensional Monte Carlo method. The SOS approach is shown to be particularly useful for cirrus clouds with optical depths less than about 5. Some demonstrative results show that the importance of the cloud-side scattering is dependent on the cloud horizontal dimension relative to the vertical thickness and that the ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.