Abstract

A simple analytical formulation is presented for describing radiative transfer due to atmospheric water vapor. The radiative model is then applied to a global energy balance for earth, and the net infrared flux to space is expressed in terms of the mean surface temperature and atmospheric lapse rate. Water vapor and clouds are assumed to be the only sources of infrared opacity. When compared with empirical information, and for a global mean surface temperature of 288 K, the radiative model indicates a cloud top altitude for a single effective cloud of 6·8 km. Alternatively, when applied to a more realistic three-cloud formulation, the model predicts a comparable value of 6·5 km for an average cloud top altitude. With respect to changes in mean surface temperature, again comparing with empirical results, a discussion relating to the model suggests that the cloud top altitude decreases with decreasing surface temperature, which results in the surface temperature being roughly twice as sensitive to changes in factors such as planetary albedo than for the conventional assumption of a fixed cloud top altitude. Implications of this are discussed with respect to possible albedo changes due to atmospheric particulate matter as well as cloudiness as a climate feedback mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.