Abstract

The interaction between radiation and a shock wave propagating through a stellar atmosphere is investigated. Departures from local thermodynamic equilibrium (LTE) are permitted in the first two levels of a 10-level hydrogen atom; levels 3-10 are in LTE. A piston moving at constant velocity into the bottom of the atmosphere drives a shock wave. This shock produces precursor radiation that diffuses through the gas well ahead of the shock and causes a mild luminosity flash in the emergent Balmer and free-free radiation when it reaches the surface. The precursor wave deposits a large amount of radiative energy in the outer layers of the atmosphere, initiating a radiation-induced pressure wave. The process of energy transfer from the radiation field to the compression wave is similar to the Eddington valve mechanism which drives stellar pulsations. Material is accelerated outward by the radiation-induced wave; eventually it free-falls inward, hits the quasistationary atmosphere, and forms an accretion shock. The piston driven shock is weakened by radiative energy losses. When it reaches the surface, the shock is invisible in the continuum radiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.