Abstract
The mechanism of the radiative recombination of hot carriers in narrow-gap semiconductors is analyzed using the example of indium antimonide. It is shown that the CHCC Auger recombination process may lead to pronounced carrier heating at high excitation levels. The distribution functions and concentrations of hot carriers are determined. The radiative recombination rate of hot carriers and the radiation gain coefficient are calculated in terms of the Kane model. It is demonstrated that the radiative recombination of hot carriers will make a substantial contribution to the total radiative recombination rate at high carrier concentrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.