Abstract

AbstractPhotoluminescence (PL) of modulation-doped Al0.22Ga0.78N/GaN heterostructures was investigated. The PL peak related to recombination between the two-dimensional electron gases (2DEG) and photoexcited holes is located at 3.448 eV at 40 K, which is 45 meV below the free excitons (FE) emission in GaN. The peak can be observed at temperatures as high as 80 K. The intensity of the 2DEG PL peak is enhanced significantly by incorporating a thin Al0.12Ga0.88N layer into the GaN layer near the heterointerface to suppress the diffusion of photoexcited holes. The energy separation of the 2DEG peak and the GaN FE emission decreases with increasing temperature. Meanwhile, the 2DEG peak energy increases with increasing excitation intensity. These results are attributed to the screening effect of electrons on the bending of the conduction band at the heterointerface, which becomes stronger when temperature or excitation intensity is increased.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.