Abstract
Multi-channel visible and near-infrared (NIR) emission transitions originating from 4G5/2 emitting state of Sm3+ in cadmium-aluminum-silicate (CAS) glasses with maximum-phonon-energy of ∼980cm−1 have been investigated. Based on the measured absorption spectrum, the Judd–Ofelt parameters Ωt (t=2, 4, 6) are derived to be 2.87×10−20, 3.34×10−20 and 1.86×10−20cm2, respectively. From the evaluated Judd–Ofelt parameters, the radiative parameters such as spontaneous emission probabilities (Arad), branching ratios (β), and radiative lifetime (τrad) are obtained from the 4G5/2 excited level to different lower energy levels. The efficient visible and NIR transition emissions have been observed in the Sm3+ doped CAS glasses, and the maximum stimulated emission cross-sections (σe-max) corresponding to emission peaks are calculated and demonstrated to lay in the same order of magnitude. The quantum efficiency of 4G5/2 level of Sm3+ has been derived to be 60%. Investigations on multi-channel radiative transition emissions originated from 4G5/2 level of Sm3+ in CAS glasses expose its potential applications in tunable laser, medical light source and NIR optoelectronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.