Abstract
Characteristics of heat transport mechanism in three-dimensional ferrofluid flow past a deformed surface subjected to the Coriolis and Lorentz forces are analyzed. The impacts of Joule heating, nonlinear thermal radiation, viscous dissipation and convective condition are also accounted. The carrier fluid (water) is embedded by Fe3O4 nanoparticles. The boundary layer approximations are employed in problem statement. Stretching transformations are utilized to form nonlinear ODE system from governed PDE system. The subsequent system is treated numerically via Runge-Kutta-Fehlberg method. Effects of relevant parameters on different flow fields are discussed comprehensively with help of graphs. It is established that the heat transfer rate is enhanced due to Coriolis and Lorentz forces. Furthermore, Fe3O4 nanoparticles enhance the Nusselt number significantly in comparison with Al2O3 nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.