Abstract
The dynamics of the radiative plasma expansion into an ambient gas is considered. The model describes the evolution of the plasma emission spectrum and the dynamics of the resulting shock wave. The time frame for the applicability of the model is in the tens of nanoseconds after the laser pulse is terminated, until a few microseconds later when the plasma ceases to emit. It is assumed that local thermodynamic equilibrium is established and that the plume expands with spherical symmetry. The model outputs are spatial and temporal distributions of atoms, ions, and electron number densities, evolution of atom and ion line profiles, and the shock wave. The model should be applicable to spectroscopic analysis of the initial plasma state and plasma dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.