Abstract

We present results on the radiative lifetimes of excitons and trions in a monolayer of metal dichalcogenide MoS2. The small exciton radius and the large exciton optical oscillator strength result in radiative lifetimes in the 0.18-0.30 ps range for excitons that have small in-plane momenta and couple to radiation. Average lifetimes of thermally distributed excitons depend linearly on the exciton temperature and can be in the few picoseconds range at small temperatures and more than a nanosecond near room temperature. Localized excitons exhibit lifetimes in the same range and the lifetime increases as the localization length decreases. The radiative lifetimes of trions are in the hundreds of picosecond range and increase with the increase in the trion momentum. Average lifetimes of thermally distributed trions increase with the trion temperature as the trions acquire thermal energy and larger momenta. We expect our theoretical results to be applicable to most other 2D transition metal dichalcogenides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call