Abstract

Abstract. Marine boundary layer clouds, including the transition from stratocumulus to cumulus, are poorly represented in numerical weather prediction and general circulation models. Further uncertainties in the cloud structure arise in the presence of biomass burning carbonaceous aerosol, as is the case over the southeast Atlantic Ocean, where biomass burning aerosol is transported from the African continent. As the aerosol plume progresses across the southeast Atlantic Ocean, radiative heating within the aerosol layer has the potential to alter the thermodynamic environment and therefore the cloud structure; however, limited work has been done to quantify this along the trajectory of the aerosol plume in the region. The deployment of the first Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF1) in support of the Layered Atlantic Smoke Interactions with Clouds field campaign provided a unique opportunity to collect observations of cloud and aerosol properties during two consecutive biomass burning seasons during July through October of 2016 and 2017 over Ascension Island (7.96∘ S, 14.35∘ W). Using observed profiles of temperature, humidity, and clouds from the field campaign alongside aerosol optical properties from Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), as input for the Rapid Radiation Transfer Model (RRTM), profiles of the radiative heating rate due to aerosols and clouds were computed. Radiative heating is also assessed across the southeast Atlantic Ocean using an ensemble of back trajectories from the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Idealized experiments using the RRTM with and without aerosols and a range of values for the single-scattering albedo (SSA) demonstrate that shortwave (SW) heating within the aerosol layer above Ascension Island can locally range between 2 and 8 K d−1 depending on the aerosol optical properties, though impacts of the aerosol can be felt elsewhere in the atmospheric column. When considered under clear conditions, the aerosol has a cooling effect at the TOA, and based on the observed cloud properties at Ascension Island, the cloud albedo is not large enough to overcome this. Shortwave radiative heating due to biomass burning aerosol is not balanced by additional longwave (LW) cooling, and the net radiative impact results in a stabilization of the lower troposphere. However, these results are extremely sensitive to the single-scattering albedo assumptions in models.

Highlights

  • Marine stratocumulus and trade wind cumulus are prominent cloud types over the Atlantic Ocean, with regional and global impacts on the energy budget (Bony and Dufresne, 2005)

  • Given the discrepancy in single-scattering albedo (SSA) between MERRA-2 and the observations presented by Zuidema et al (2018b), a sensitivity test was performed to determine the role of SSA in radiative heating due to aerosols within the column to quantify the uncertainty associated with the SSA used

  • An idealized approach was used to quantify the contribution of clouds and biomass burning aerosol to heating within the atmospheric column located above Ascension Island in connection with the Layered Atlantic Smoke Interactions with Clouds (LASIC) campaign conducted by the Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) program

Read more

Summary

Introduction

Marine stratocumulus and trade wind cumulus are prominent cloud types over the Atlantic Ocean, with regional and global impacts on the energy budget (Bony and Dufresne, 2005). Despite their importance, models struggle to accurately represent these clouds and their properties. Marquardt Collow et al.: Radiative heating rate profiles over the southeast Atlantic Ocean more, models struggle to properly link environmental conditions to cloud properties of trade wind cumuli (Nuijens et al, 2015). Biomass burning aerosol that gets entrained into marine stratocumulus clouds in the southeast Atlantic has a larger impact on the radiation budget than the direct radiative effect of the aerosol itself (Lu et al, 2018).

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.