Abstract
The structure and dynamics of Earth's interior depend crucially upon heat flow and thus upon the thermal conductivity of its constituents. We measured optical absorbance spectra of hydrous wadsleyite and hydrous ringwoodite at simultaneous high-pressure and high-temperature conditions up to 26GPa and 823K in order to determine their radiative conductivities and to study the potential influence of hydration in the transition zone on thermal conductivity of the mantle. We report radiative thermal conductivities of 1.5±0.2Wm−1K−1 for hydrous wadsleyite and 1.2±0.1Wm−1K−1 for hydrous ringwoodite at transition zone conditions. The analytically derived radiative thermal conductivities of anhydrous wadsleyite and ringwoodite are 40% and 33% higher, respectively. The total thermal conductivities, calculated from temperature- and pressure-dependent optical absorption measurements, maintain an energy transmission window in the infrared and visible spectral range at high pressures and temperatures. The results indicate that the mantle transition zone may contribute significantly to heat transfer in the mantle and demonstrate the importance of radiative heat transfer in controlling geodynamic processes in Earth's mantle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.