Abstract
Experiments were conducted using porous ceramic inserts to enhance the radiative heat transfer from natural gas flames in a straight-through radiant tube burner. The performance of the radiant tube burner with partially stabilized zirconia and silicon carbide inserts is compared to a baseline case of no inserts at three levels of combustion air preheat. Spectral intensities, temperatures within the radiant tube burner, tube wall temperatures, and exhaust temperatures were measured to determine the effectiveness of the enhanced heat transfer due to the inserts. Exhaust emission constituents were also measured to determine the effect that the inserts have on exhaust products. NO x emissions are reduced by up to 30% with the inserts. The silicon carbide inserts have higher spectral intensities and total radiative energy transfer than partially stabilized zirconia inserts. Both inserts have enhanced radiant heat transfer compared to the no-insert configuration, with the radiative enhancement due to inserts as great as five times that of the no-insert configuration. The net result is increased tube wall temperatures and decreased exhaust temperatures with the ceramic inserts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.