Abstract
This work reports new experimental radiative lifetimes and calculated oscillator strengths for transitions from 3d8 4d levels of astrophysical interest in singly ionized nickel. Radiative lifetimes of seven high-lying levels of even parity in Ni II (98400 -100600 cm-1) have been measured using the time-resolved laser-induced fluorescence method. Two-step photon excitation of ions produced by laser ablation has been utilized to populate the levels. Theoretical calculations of the radiative lifetimes of the measured levels and transition probabilities from these levels are reported. The calculations have been performed using a pseudo-relativistic Hartree-Fock method, taking into account core polarization effects. A new set of transition probabilities and oscillator strengths has been deduced for 477 Ni II transitions of astrophysical interest in the spectral range 194 - 520 nm depopulating even parity 3d8 4d levels. The new calculated gf-values are, on the average, about 20 % higher than a previous calculation by Kurucz (http://kurucz.harvard.edu) and yield lifetimes within 5 % of the experimental values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.