Abstract

In spite of having finite lifetimes exciton-polaritons in microcavities are known to condense at strong enough pumping of the reservoir. We present an analytical theory of such Bose condensates on a set of localized one-particle states: condensation centers. To understand the physics of these arrays one has to supplement the Josephson coupling by the radiative coupling caused by the interference of the light emitted by different centers. Combination of these couplings with the one-site interaction between the bosons leads to a rich nonlinear dynamics. In particular, a new regime of radiation appears. We call it weak lasing: The centers have macroscopic occupations and radiate coherently, but the coupling alone is sufficient for stabilization. The system can have several stable states and switch between them. Moreover, the time reversal symmetry in this regime is, as a rule, broken.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.