Abstract

Abstract The radiative cooling rate in the tropical upper troposphere is expected to increase as climate warms. Since the tropics are approximately in radiative–convective equilibrium (RCE), this implies an increase in the convective heating rate, which is the sum of the latent heating rate and the eddy heat flux convergence. We examine the impact of these changes on the vertical profile of cloud ice amount in cloud-resolving simulations of RCE. Three simulations are conducted: a control run, a warming run, and an experimental run in which there is no warming but a temperature forcing is imposed to mimic the warming-induced increase in radiative cooling. Surface warming causes a reduction in cloud fraction at all upper-tropospheric temperature levels but an increase in the ice mixing ratio within deep convective cores. The experimental run has more cloud ice than the warming run at fixed temperature despite the fact that their latent heating rates are equal, which suggests that the efficiency of latent heating by cloud ice increases with warming. An analytic expression relating the ice-related latent heating rate to a number of other factors is derived and used to understand the model results. This reveals that the increase in latent heating efficiency is driven mostly by 1) the migration of isotherms to lower pressure and 2) a slight warming of the top of the convective layer. These physically robust changes act to reduce the residence time of ice at any particular temperature level, which tempers the response of the mean cloud ice profile to warming. Significance Statement Here we examine how the amount of condensed ice in part of the atmosphere—the tropical upper troposphere (UT)—responds to global warming. In the UT, the energy released during ice formation is balanced by the emission of radiation to space. This emission will strengthen with warming, suggesting that there will also be more ice. Using a model of the tropical atmosphere, we find that the increase in ice amount is mitigated by a reduction in the amount of time ice spends in the UT. This could have important implications for the cloud response to global warming, and future work should focus on how these changes are manifested across the distribution of convective cloud types.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call