Abstract

We discuss recent improvements in the calculation of the radiative cooling in both collisionally and photo ionized plasmas. We are extending the spectral simulation code Cloudy so that as much as possible of the underlying atomic data is taken from external databases, some created by others, some developed by the Cloudy team. This paper focuses on recent changes in the treatment of many stages of ionization of iron, and discusses its extensions to other elements. The H-like and He-like ions are treated in the iso-electronic approach described previously. Fe II is a special case treated with a large model atom. Here we focus on Fe III through Fe XXIV, ions which are important contributors to the radiative cooling of hot, 1e5 to 1e7 K, plasmas and for X-ray spectroscopy. We use the Chianti atomic database to greatly expand the number of transitions in the cooling function. Chianti only includes lines that have atomic data computed by sophisticated methods. This limits the line list to lower excitation, longer wavelength, transitions. We had previously included lines from the Opacity Project database, which tends to include higher energy, shorter wavelength, transitions. These were combined with various forms of the g-bar approximation, a highly approximate method of estimating collision rates. For several iron ions the two databases are almost entirely complementary. We adopt a hybrid approach in which we use Chianti where possible, supplemented by lines from the Opacity Project for shorter wavelength transitions. The total cooling including the lightest thirty elements differs significantly from some previous calculations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.