Abstract

SummaryThe outer space (3 K) represents an important thermodynamic resource. It has been known for decades that at nighttime, a sky-facing thermal emitter radiating strongly within the atmospheric transparency window (8–13 μm), can reach below the ambient temperature. In recent studies, thermoelectric generators were used to harness this temperature difference between the emitter and ambient to generate electricity. However, the demonstrated power density has been limited by parasitic thermal losses. Here we show that these parasitic losses can be reduced through thermal engineering. We present a simple model showing the optimum power density can be approached by controlling the relation between the emitter area and the thermal resistance of the thermoelectric generator. We show that the stacking of multiple thermoelectric generators is an effective way to approach this optimum. We experimentally demonstrate a generated electric power density >100 mW/m2, representing > 2-fold improvement over the previous results for nighttime radiative cooling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.