Abstract

The UV radiation of glow- and capacitive-discharge lamps based on mixtures of inert gases with iodine vapors are optimized in the spectral range of 175–360 nm, in which working helium-iodine mixtures of different compositions are used. The most intense spectral lines in the bactericidal region of the spectrum were the atomic lines of iodine (183.0, 206.2 nm), and in the region of 320–360 nm, emission of the spectral band of an iodine molecule prevailed with a maximum at λ = 342 nm. For a capacitive lamp with a casing opaque in the spectral range λ < 250 nm, the main part of the plasma emission power is concentrated in the A′-D′ band of an iodine molecule with a maximum at 342 nm. The emission brightness of this lamp is optimized in iodine molecule transitions depending on the partial helium pressure. We present the results of simulating the kinetics of processes in a glow-discharge plasma in mixtures of He, Xe, and iodine vapors. We establish the dependence of the main part of the emission intensity of the 206.2 nm spectral line of an iodine atom and the 342 nm band of an iodine molecule on the helium pressure in a glow-discharge lamp operating on a He-I2 mixture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.