Abstract

Radiative capture $p + {}^{13}\mathrm{C}\rightarrow {}^{14}\mathrm{N}+\gamma $ at energies bearing astrophysical consequences is one of the important processes in the CNO cycle. We focus on the possibility of describing the main contribution to the total cross section of the radiative capture process in the framework of the single-particle potential model without separation into direct and resonant transitions. In case where the single-particle potential model fails to describe other partial components, we use the R-matrix approach. The partial components of the astrophysical S-factor are calculated for all possible electric dipole transitions. The calculated value of the total S-factor at zero energy is in good agreement with earlier reported values. Based on the value of total astrophysical S-factor depending on the collision energy, we calculate the nuclear reaction rates for ${p} + {^{13}\mathrm{C}} \rightarrow {^{14}\mathrm{{N}}}+\gamma $ .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.