Abstract

This communication pertains to the study of radiative heat transfer in boundary layer flow over an exponentially shrinking permeable sheet placed at the bottom of fluid saturated porous medium. The porous medium has permeability of specified form. The fluid considered here is Newtonian, without phase change, optically dense, absorbing-emitting radiation but a nonscattering medium. The setup is subjected to suction to contain the vorticity in the boundary layer. The radiative heat flux in the energy equation is accounted by Rosseland approximation. The thermal conductivity is presumed to vary with temperature in a linear fashion. The governing partial differential equations are reduced to ordinary differential equations by similarity transformations. The resulting system of nonlinear ordinary differential equations is solved numerically by fourth-order Runge-Kutta scheme together with shooting method. The pertinent findings displayed through figures and tables are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.