Abstract

Filaments and flares are prominent indicators of the magnetic fields of solar activity. These instability phenomena arise from the influence of weak transport effects (radiation and resistivity, respectively) on coronal magnetodynamics and energy flow. We have previously shown that the filament and flare (tearing or reconnection) mechanisms are resistively coupled in sheared magnetic fields of the kind existing in active regions. The present paper expands this treatment to include the effects of compressibility and viscosity, which are most prominent at short wavelengths. The results show that compressibility affects the radiative mode, including a modest increase of its growth rate, and that viscosity modifies the tearing mode, partially through a decrease of its growth rate. A comprehensive discussion of the mode structures and flows is presented. The strongest effect found is a reversal, at very long wavelengths, of the radiative cooling of the resistive interior layer of the tearing mode, caused by compressional heating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.