Abstract

The relationship between radiative and nonradiative electron transfer is explored for return electron transfer processes in the contact radical-ion pairs formed by excitation of ground state CT complexes. Using a conventional nonadiabatic theory of electron transfer, absolute rate constants for nonradiative return electron transfer, varying over more than two orders of magnitude, can be predicted from information obtained from analyses of the corresponding radiative processes. The effects of solvent polarity, driving force and molecular dimension on the rates of nonradiative return electron transfer are studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call