Abstract

The heat transfer in the vicinity of the critical point is investigated for hypersonic air flow around a blunt body. The gas-dynamical conservation equations are solved simultaneously with the radiative transport equation in integral form. Allowance is made for the viscosity, heat conduction, and the actual radiation parameters of air, including spectral line emission. Profiles are obtained for the thermodynamic variables along the critical line. The dependence of the radiative and convective components of the aerodynamic heating on the velocity and pressure ahead of the shock front as well as the radius of curvature of the blunt nose section is discussed. Approximate relations having the form of similarity laws are derived for the heat fluxes in the vicinity of the critical point. The limits of applicability of the thermodynamic equilibrium approximation in the shock-compressed layer are discussed. The influence of absorption of radiation from the compressed layer by the cold freestream on the aerodynamic heating is considered. Attention is given in this case to the dependence of the spectral absorption coefficient for the cold air on the intensity of the radiation incident upon it.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.