Abstract

PP samples, in which the three unique carbon atom positions along the chain were selectively labeled with C-13, have been subjected to γ-irradiation in the presence of oxygen, and the resulting organic volatile products analyzed by GC/MS. The isotopic labeling patterns in 33 organic degradation compounds have been assigned by comparison of the four mass spectra for each compound (from unlabeled PP, and from the three labeled PP materials). The volatile products have been “mapped” onto their positions of origin from the PP macromolecule, and insights have been gained into the chemistry through which these compounds must have formed. Most products show high specificity of isotopic labeling, indicating a single dominant reaction pathway. Oxidation chemistry occurred heavily at the C(2) tertiary carbon, with chemistry also at C(1) methylene. Methyl ketones are in abundance, along with alcohols, some aliphatic hydrocarbons, and other compound types. The C(3) methyl carbon remained attached to its original C(2) position in all catenated degradation products, and underwent no chemistry. However, products containing “non-catenated” carbons (i.e., not bonded to any other carbon atom) consisted entirely of a mix of C(3) and C(1). By examination of the labeling patterns, many products could be assigned to two successive chain scission events in close proximity, while others are clearly seen to arise from cleavage, followed by radical–radical recombination reactions. Interestingly, the former products (two chain scissions) are all found to have an odd number of carbon atoms along their chain, while the latter (scission followed by radical–radical reaction) all have an even number of carbons. An explanation of this odd/even phenomenon is provided in terms of the symmetry of the PP macromolecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.