Abstract
AbstractTo elucidate the reaction mechanism of radiation‐induced polymerization of methyl methacrylate adsorbed on silica gel, the temperature dependence and effects of acetone and pyridine were investigated. It was found that even at −78°C the polymerization rate was quite fast. The amounts of high molecular weight GPC peaks of both graft polymers and homopolymers increased with increasing irradiation temperature. The activation energy of the adsorbed state polymerization was low compared with that of bulk polymerization. The low molecular weight peaks of homopolymers decreased with acetone addition but were almost unaffected by pyridine. The low molecular weight peaks of homopolymers were thus polymerized by an anionic mechanism. In the methyl methacrylate–silica gel system both radical and anionic polymerization take place at the same time in formation of graft polymers and homopolymers. A reaction mechanism for the methyl methacrylate–silica gel system was proposed based on the results obtained to date.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science: Polymer Chemistry Edition
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.