Abstract

The intensity of radiation-induced luminescence and transient optical losses in KU-1 (Russia) and K-3 (Japan) quartz glass optical tibers irradiated in a fast pulsed fission reactor (a pulse duration of 80 μs and a neutron flux up to 7 × 1016 cm–2 s–2) has been measured in the visible range. The intensity of the fast luminescence component nonlinearly depends on the neutron flux. The luminescence intensity and the transient optical losses depend on the probe light intensity. Suppression of radiation-induced luminescence is observed at wavelengths that are longer or shorter than the probe light wavelength. Light probing leads to an increase in transient optical losses and a more rapid recovery of transparency. A model of two photon fluxes is proposed to analyze the relationship of the effects of suppression of radiation-induced luminescence and the increase in optical losses upon light probing. The effect of suppression of radiation-induced luminescence can be used to control the optical properties of fibers in radiation fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call