Abstract

Helium (He) bubbles are typical radiation defects in structural materials in nuclear reactors after high dose energetic particle irradiation. In the past decades, extensive studies have been conducted to explore the dynamic evolution of He bubbles under various conditions and to investigate He-induced hardening and embrittlement. In this review, we summarize the current understanding of the behavior of He bubbles in metals; overview the mechanisms of He bubble nucleation, growth, and coarsening; introduce the latest methods of He control by using interfaces in nanocrystalline metals and metallic multilayers; analyze the effects of He bubbles on strength and ductility of metals; and point out some remaining questions related to He bubbles that are crucial for design of advanced radiation-tolerant materials.

Highlights

  • It has been well demonstrated that even extremely low overall He concentration can lead to He embrittlement via formation of He bubbles along grain boundaries (GBs) [18,19]

  • We briefly summarize previous studies on He bubbles in metals

  • Limited spatial resolution and temporary resolution of various instruments hinder the direct real-time atomic-scale observation of bubble formation, which prevents unveiling the mechanisms underlying bubble nucleation, growth and coarsening. Studies on this issue using computer simulation methods [25,26,27,28,29,30,31,32,33,34,35,36,37,38] have been conducted in past decades

Read more

Summary

Introduction

Nucleeaarreenneergrgyyisipslapylainyginagn ainncrienacsrienagsliynigmlypoimrtapnotrrtoanletbreoclaeubseecfoasussiel fufoeslsial rfeugerlasdauraellygrraudnunainllgy oruunt.niNngucoleuatr. eNnuecrlgeyarcuernreerngtylycpurrorevnidtleys pabroovuitd1e3s%aboofuetle1c3t%ricaolf peolewcetrricwalorpldoweidr ew[1o]r.ldHwoidweev[1e]r., mHoatwereivaelsr,dmepaltoeyreiadlsindfiepssliooyne,dspinallfaitsisoinona,nsdpfaullsaitoinonsyasntedmfsusuiofnfersyfrsotmemisntseunfsfe rhifgrohm-enienrtgeynsneeuhtirgohnreandeiragtyione[u1t]r.onCornadtiinautioouns[1co].llCisoionntincuaoscuasdceosllpisrioodnuccaescmaadsessivperovdaucacencmyacslsuisvteervsaacnandciynctelurssttietriaslasnind ninutcelresatirticaolsminponnuecnlet amr acotemripaolsn, ewnthimchateprrioamls,owtehs ifcohrmpraotmioonteosf fvoarmrioautisondeoffecvtasr,iosucshdeafsecdtiss,losucachtioans ldoioslposca[2ti,o3]n, lvoooipds [[24,,35]],, vstoaidcksi[n4g,5f]a, ustlat ctketirnaghfeadurlatlte(StrFaTh)e[d6r,a7l] (aSnFdT)so[6o,7n].aInndasdodoitnio. nIn, (and,dαi)tiroena,c(tnio, nαs) preraocdtuiocnesapbruondduacnetahbeulniudman(tHhee)liautmom(Hs ein) amtoamtesriianlsm. Limited spatial resolution and temporary resolution of various instruments hinder the direct real-time atomic-scale observation of bubble formation, which prevents unveiling the mechanisms underlying bubble nucleation, growth and coarsening. Studies on this issue using computer simulation methods [25,26,27,28,29,30,31,32,33,34,35,36,37,38] have been conducted in past decades. Body-centered-cubic (BCC) metals have attracted more attention due to their better radiation resistance than face-centered-cubic (FCC) metals

He–V Clusters
Helium Bubble in Nanocrystalline Metals and Metallic Multilayers
Helium Bubbles in Nanocrystalline Metals
Helium Bubbles in Metallic Multilayers
High Temperature Helium Embrittlement in Polycrystalline Metals
Helium Bubbles Enhance Ductility in Small-Volume Single-Crystal Metals
Methods
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call