Abstract

Stereotactic radiosurgery (SRS) is a promising treatment for medically intractable mesial temporal lobe epilepsy. SRS for epilepsy has had an acceptable safety profile with reports of radiation-induced vascular malformations confined to central nervous system pathologies with prominent angiogenesis – namely, primary brain tumors, metastases, and arteriovenous malformations. Theoretical risks for radiation-induced lesions following radiosurgery for epilepsy have yet to be established. Of 13 patients treated in a pilot trial for medial temporal lobe epilepsy, one developed multiple delayed radiation-induced cavernous malformations following radiosurgery. This patient received a prescription dose of 20 Gy delivered to the amygdala, anterior hippocampus, and parahippocampal gyrus. Eight years following treatment, computed tomography imaging demonstrated an evolving hyperdensity in the mesial temporal lobe. Magnetic resonance imaging confirmed multiple T2 hypointense lesions with a mixed-signal intensity core in the left parahippocampal gyrus and anterior temporal lobe. The patient was initially managed conservatively. However, recurrent hemorrhage ultimately caused an acute deterioration in mental status, aphasia, and hemiparesis, necessitating surgical resection. Pathology confirmed radiation-induced cavernous malformations. This represents the first case of a radiation-induced vascular lesion as a long-term sequela of radiosurgery for epilepsy and illustrates the potential for this complication even when low doses are used in patients without angiogenic lesions. Optimal timing and indications for surgical resection of radiation-induced cavernous malformations prior to the development of neurologic symptoms warrant further refinement. Long-term vigilance and clinical monitoring are required.

Highlights

  • Radiosurgery is a less invasive treatment option for medically intractable mesial temporal lobe epilepsy (MTLE) for those not eligible or wanting an open surgical procedure, such as anterior temporal lobectomy

  • Pathology confirmed radiation-induced cavernous malformations. This represents the first case of a radiation-induced vascular lesion as a long-term sequela of radiosurgery for epilepsy and illustrates the potential for this complication even when low doses are used in patients without angiogenic lesions

  • In May 2008, a non-contrast magnetic resonance imaging (MRI) demonstrated evolving encephalomalacia with surrounding gliosis and decreasing fluid-attenuated inversion recovery (FLAIR) hyperintensity of the left anterior mesial temporal lobe structures, including the amygdala, anterior hippocampus, and parahippocampal gyrus, consistent with evolving changes related to her Gamma Knife radiosurgery

Read more

Summary

Introduction

Radiosurgery is a less invasive treatment option for medically intractable mesial temporal lobe epilepsy (MTLE) for those not eligible or wanting an open surgical procedure, such as anterior temporal lobectomy. In May 2008, a non-contrast MRI demonstrated evolving encephalomalacia with surrounding gliosis and decreasing fluid-attenuated inversion recovery (FLAIR) hyperintensity of the left anterior mesial temporal lobe structures, including the amygdala, anterior hippocampus, and parahippocampal gyrus, consistent with evolving changes related to her Gamma Knife radiosurgery. These imaging findings subsequently stabilized on repeat imaging in April 2009. A non-contrast MRI again demonstrated a heterogenous multilobulated lesion within the left parahippocampal gyrus with a mixed signal intensity core, surrounding T2-hypointense rim, and marked susceptibility She was subsequently hospitalized for seven days and discharged with a decadron taper.

Surgical procedure
Discussion
Conclusions
Findings
Disclosures
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call