Abstract

The influences of the polymerization media, the monomer and solvent concentrations and the temperature on the radiation-induced polymerization of isopropyl vinyl ether (IPVE) have been studied in detail under super-dry conditions. Rates of polymerization were measured and estimates of the rate constants of polymerization were calculated according to the simplified Hayashi-Williams equation. A comparison of the results with those previously reported for ethyl vinyl ether (EVE) is made. The much higher reactivity of IPVC in low polar solvents is interpreted by a drastic reduction of the polymer intramolecular solvation of the growing chain ends. This is ascribed to the bulkiness of the isopropyl side-chain groups. The radiation-induced polymerization of IPVE in bulk and in various solvents with different physical and solvating properties was studied. This was to obtain further information on the kinetics and the mechanisms involved with this monomer and also the role of the polymerization media. The influence of the monomer and solvent concentrations and of the polymerization temperature on the rate of polymerization have also been investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call