Abstract
Chronic kidney disease is a known complication of hematopoietic stem cell transplant (HSCT) and can be caused by irradiation at the time of the HSCT. In our rat model there is a 6- to 8-wk latent period after irradiation that leads to the development of proteinuria, azotemia, and hypertension. The current study tested the hypothesis that decreased endothelial-derived factors contribute to impaired afferent arteriolar function in rats exposed to total body irradiation (TBI). WAG/RijCmcr rats underwent 11 Gy TBI, and afferent arteriolar responses to acetylcholine were determined at 1, 3, and 6 wk. Blood pressure and blood urea nitrogen were not different between control and irradiated rats. Afferent arteriolar diameters were not altered in irradiated rats. Impaired endothelial-dependent responses to acetylcholine were evident at 3 and 6 wk following TBI. Nitric oxide synthase (NOS), cyclooxygenase (COX), and epoxygenase (EPOX) contribution to acetylcholine dilator responses were evaluated. NOS inhibition with N(G)-nitro-l-arginine methyl ester (l-NAME) reduced acetylcholine responses by 50% in controls and 90% in 3-wk TBI rats. COX inhibition with indomethacin did not significantly alter the acetylcholine response in the presence or absence of l-NAME. EPOX inhibition with N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide significantly decreased acetylcholine responses (35%) in controls but did not significantly alter acetylcholine responses (4%) in TBI rats. Biochemical analysis revealed decreased urinary EPOX metabolites but no change in COX, NOS, or reactive oxygen species at 3 wk TBI. Taken together, these results indicate that afferent arteriolar endothelial dysfunction involves a decrease in EPOX metabolites that precedes the development of proteinuria, azotemia, and hypertension in irradiated rats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American journal of physiology. Heart and circulatory physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.