Abstract

Knowledge of structural and thermal properties of molten salts is crucial for understanding and predicting their stability in many applications such as thermal energy storage and nuclear energy systems. Probing the behavior of metal contaminants in molten salts is presently limited to either foreign ionic species or metal nanocrystals added to the melt. To bridge the gap between these two end states and follow the nucleation and growth of metal species in molten salt environment in situ, we use synchrotron X-rays as both a source of solvated electrons for reducing Ni2+ ions added to ZnCl2 melt and as an atomic-level probe for detecting formation of zerovalent Ni nanoparticles. By combining extended X-ray absorption fine structure analysis with X-ray absorption near edge structure modeling, we obtained the average size and structure of the nanoparticles and proposed a radiation-induced reduction mechanism of metal ions in molten salts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.