Abstract

We explore Implicit Monte Carlo (IMC) and Discrete Diffusion Monte Carlo (DDMC) for radiation transport in high-velocity outflows with structured opacity. The IMC method is a stochastic computational technique for nonlinear radiation transport. IMC is partially implicit in time and may suffer in efficiency when tracking Monte Carlo particles through optically thick materials. DDMC accelerates IMC in diffusive domains. Abdikamalov extended IMC and DDMC to multigroup, velocity-dependent transport with the intent of modeling neutrino dynamics in core-collapse supernovae. Densmore has also formulated a multifrequency extension to the originally grey DDMC method. We rigorously formulate IMC and DDMC over a high-velocity Lagrangian grid for possible application to photon transport in the post-explosion phase of Type Ia supernovae. This formulation includes an analysis that yields an additional factor in the standard IMC-to-DDMC spatial interface condition. To our knowledge the new boundary condition is distinct from others presented in prior DDMC literature. The method is suitable for a variety of opacity distributions and may be applied to semi-relativistic radiation transport in simple fluids and geometries. Additionally, we test the code, called SuperNu, using an analytic solution having static material, as well as with a manufactured solution for moving material with structured opacities. Finally, we demonstrate with a simple source and 10 group logarithmic wavelength grid that IMC-DDMC performs better than pure IMC in terms of accuracy and speed when there are large disparities between the magnitudes of opacities in adjacent groups. We also present and test our implementation of the new boundary condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call