Abstract

Temperature measurement of cutting tools used in machining processes has great technological importance, and it is interesting in a large number of industrial applications because wear is directly related to this variable. The influence of emissivity on the temperature measurement using radiation thermometers and the dependence of the measured temperature on the emissivity as a function of the surface roughness and the oxidation state is studied in this paper. Emissivity is measured using the direct radiometric method for uncoated P10 tungsten carbide inserts. Theoretical temperature shifts produced by changes in emissivity are estimated for several types of radiation thermometers, and these shifts are compared to the experimental temperature measurements carried out in the orthogonal turning process of cylindrical samples of 42CrMo4 steel with different machinability grades.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.