Abstract

The use of hydrogels as carriers for anticancer delivery has been a subject of significant recent research. In our recent work, we have shown that diffusion-controlled delivery of flutamide from hydrogels containing poly (dimethylaminoethyl methacrylate (DMAEMA)/ethyleneglycol dimethacrylate (EGDMA)) can be possible and controlled by the three-dimensional structure. Hydrogels based essentially on dimethylaminoethyl methacrylate and different ratios of ethyleneglycol dimethacrylate monomers were synthesized using gamma radiation copolymerization. The influence of copolymer composition and pH value of the surrounding medium on swelling behavior into the glassy polymer were discussed. The results showed that the ratio of EGDMA in the comonomer feeding solution has a great effect on the gel fraction and water content in the final hydrogel. In this regard, it was observed that the increase of EGDMA ratio decreased these properties. The ability of the prepared copolymer to be used as drug carrier for anticancer drug-delivery system was estimated using flutamide as a model drug. In vitro drug-release studies in different buffer solutions show that the basic parameters affecting the drug release behavior of hydrogel are the pH of the solution and DMAEMA content of hydrogel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call