Abstract
AbstractA high yield of graphene oxide (GO) was chemically synthesized from graphite powder utilizing adjusted Hummer's method. The contents of acidic functional groups in GO were determined using potentiometric titration. Composite hydrogels dependent on graphene oxide/poly(2‐acrylamido‐2‐methylpropanesulfonic acid)/polyvinyl alcohol (GO/PAMPS/PVA) were synthesized utilizing a 60Co gamma irradiation source at different doses. The synthesized graphene oxide and composite hydrogels were portrayed via X‐ray diffraction, thermogravimetric analysis, and Fourier transform infrared analysis. The morphology of composite hydrogels was characterized by scanning electron microscope. The gel % and swelling % for the prepared hydrogel demonstrated that the swelling % of hydrogel increased with raising AMPS content. Whereas the increment of GO and increasing the irradiation dose lead to a reduction in the swelling %. The influences of pH, GO percentage, initial dye concentration, the adsorbent dosage, contact time, and temperature on the adsorption of basic blue 3 dye were evaluated and the adsorption capacity was 194.6 mg/g at optimum conditions; pH = 6, GO/PAMPS/PVA composite hydrogels with 5 wt% of GO, initial dye concentration = 200 mg/L, adsorbent dose = 0.1 g, solution volume = 50 mL after 360 min at room temperature (25°C). The adsorption of dye onto the GO/PAMPS/PVA composite hydrogels follows Pseudo‐second‐order adsorption kinetics, fits the Freundlich adsorption isotherm model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.