Abstract

This study focuses on the synthesis and characterization of a pH-responsive nanogel system composed of sodium alginate (NaAlg) and poly(acrylic acid) loaded with ferulic acid. The mechanism of nanogel formation by gamma irradiation was elucidated, highlighting the role of polymer interactions and crosslinking agents. The pHdependent release of ferulic acid from the nanogel carrier was investigated, revealing a controlled release behavior in response to pH variations. The zeta potential values remained slightly negative across the pH range, indicating the presence of surface functional groups. Transmission electron microscopy confirmed the nanogel's formation and uniform particle size at pH 1. This nanogel was considered for controlled drug delivery applications, exhibiting high physical and chemical stability of ferulic acid. Our nanogel compound 5 decreased IC50 against HepG2, A549, MCF-7 and HCT-116 by 58.22 %, 78.35 %, 45.81 %, and 47.94 % respectively. Additionally, it decreased IC50 against VEGFR2 and EGFRT790 M by 41.94 %, and 70.59 % respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.