Abstract

UV radiation-induced epidermal apoptotic sunburn cells provide a mechanism for eliminating cells with irreparable DNA damage. The UVB (290-320 nm) waveband is mainly responsible, but the role of UVA (320-400 nm) is less clear, and possible waveband interactions have not been examined. Recent studies in mice reveal a protective role for UVA against UVB-induced inflammation and immunosuppression, mediated via cutaneous heme oxygenase (HO). As HO has antiapoptotic properties in other tissues, this study examines the effect of UVA/UVB waveband interaction on apoptosis in the Skh:hr-1 hairless mouse epidermis. Apoptosis was assessed by sunburn cell number, caspase-3-positive cell number, and degree of DNA fragmentation, in mice exposed to radiation sources providing a constant UVB dose with increasing proportions of UVA. The results indicated that as the UVA/UVB ratio was increased, both the sunburn cell and caspase-3-positive cell number decreased, and the degree of DNA fragmentation was reduced. Treatment of mice with the HO inhibitor, tin protoporphyrin-IX, markedly reduced the UVA antiapoptotic effect, confirming a major role for HO. The observations suggest that UVA reduces UVB-induced DNA damage, and may therefore have anti-photocarcinogenic properties that could be harnessed for better photoprotection in humans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call