Abstract

High resolution (4 mm) tof PET-CT (positron emission tomography-computed tomography) from Philips of model Ingenuity TF is newly installed at Institute of Nuclear Medical Physics (INMP). 128 slice CT component incorporated with PET provides comparatively lower dose than the 511 keV annihilation photons associated with positron decay from PET scan. So, for designing shielding in our PET-CT facility, only 511 keV annihilation photons energy has been considered. The main objective of this paper is to show what measures have been taken to protect patients, occupational workers as well as environment from PET-CT radiation hazard through a cost effective design that satisfy the national regulatory demand. In this paper, AAPM (American Associations of Physicists in Medicine) Task group 108 analysis for PET and PET-CT shielding requirements is followed for our PET-CT facility shielding design. From theoretical calculation as shielding requirement, 1.1 cm Pb thickness or, 13 cm concrete thicknesses are found. Practically, all walls and ceiling are of 30.48 cm (1 foot) thick made of concrete with density 2.35 gcm-3 for more safety. As x-ray from CT is not taken into account for shielding analysis, Bangladesh Atomic Energy Commission (BAEC) conducted an extensive radiation survey at controlled, supervised and public area for CT. The report that is found meets the national regulatory requirements.

Highlights

  • Bangladesh is a developing country and is facing many challenges, especially in health sector

  • High resolution (4 mm) tof PET-CT from Philips of model Ingenuity TF is newly installed at Institute of Nuclear Medical Physics (INMP). 128 slice CT component incorporated with PET provides comparatively lower dose than the 511 keV annihilation photons associated with positron decay from PET scan

  • AAPM (American Associations of Physicists in Medicine) Task group 108 analysis for PET and PET-CT shielding requirements is followed for our PET-CT facility shielding design

Read more

Summary

Introduction

Bangladesh is a developing country and is facing many challenges, especially in health sector. Government has given the priority in cancer diagnosis and management due to the current trend of cancer disease in this region Under this consideration, nuclear tof PET-CT (time of flight positron emission tomography-computed tomography) machine for imaging purpose is newly installed at Institute of Nuclear Medical Physics (INMP) under Bangladesh Atomic Energy Commission (BAEC). CT part is incorporated with PET to get fused image This machine can diagnose cancer at molecular level. PET image resolution is very high (4 mm) imported from Philips (USA) of model Ingenuity TF; timing resolution and coincidence window are 600 ps and 5 ns respectively. In this machine, LYSO (Lu1.8Y0.2SiO5: Ce) crystals are used. A lot of methods have been developed in this calculation but in all cases above factors are considered

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call