Abstract

In this study, a novel gamma-ray radiation sensor has been developed depending on a 1D photonic crystal (1D-PhC). Based on porous silicon (PSi) layer that has been penetrated by a conjugated copolymer (B-co-MP) which consists of BEHP-PPV and MEH-PPV, with a fractional ratio of 60:40. The suggested method for the development of the dosimeter is based on the shift of photonic band-gap to shorter wavelengths, where exposure to gamma-ray radiation at doses ranging from 0 to 20 kGy alters the refractive index of the (B-co-MP) copolymer. The fitted experimental data, the equation of Bruggeman effective medium, and the transfer matrix method (TMM) are the main axes in the framework of the current theoretical approach. The collected data shows that, within the visible range, the suggested sensor's sensitivity (224 nm/RIU) is high and stable over a 0-20 kGy applied-dose range. Also, we compared these results with previous research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.