Abstract

Cyclooxygenase-2 (COX-2) is considered a potential target for cancer therapy, because COX-2 levels are elevated in the majority of human tumors compared with the normal tissues. COX-2 inhibitors inhibit tumor growth and enhance radiation response in vitro as well as in vivo. However, the precise role of COX-2 in radiation response is not clear. The purpose of the present study was to investigate the in vitro radiosensitivity of tumor cells as a function of COX-2 expression. PC3 and HeLa cells express COX-2 protein constitutively. We silenced the COX-2 gene in these cells using small interfering RNA (siRNA). Transfection of PC3 cells with 100 nmol/L siRNA targeted against COX-2 resulted in reduction of COX-2 protein by 75% and inhibition of arachidonic acid-induced prostaglandin E2 synthesis by approximately 50% compared with the vehicle control. In HeLa cells, 100 nmol/L COX-2 siRNA inhibited COX-2 protein expression by 80%. Cell cycle analysis showed that transfection with COX-2 siRNA did not alter the cell cycle distribution. Radiosensitivity was determined by clonogenic cell survival assay. There was no significant difference in the radiosensitivity of cells in which COX-2 was silenced compared with the cells transfected vehicle or with negative control siRNAs (enhancement ratio = 1.1). These data indicate that the in vitro radiosensitivity of tumor cells is minimally dependent on the cellular COX-2 status. Given that a number of potential mechanisms are attributed to COX-2 inhibitors for radiosensitization, specific intervention of COX-2 by RNA interference could help elucidate the precise role of COX-2 in cancer therapy and to optimize strategies for COX-2 inhibition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.