Abstract

We report the gamma (γ)-ray radiation resistance of praseodymium (Pr3+)-doped aluminum lithium fluorophosphate scintillator glasses. For its assessment as a scintillator material for laser fusion experiments, a 20Al(PO3)3-80LiF-PrF3 (Pr3+-doped APLF) glass was irradiated with γ-rays from a cobalt-60 (60Co) source resulting in an absorbed dose of 5.2 kGy. Although γ-ray-irradiation results in increased absorption due to phosphorus-oxygen hole centers (POHCs) and PO3 2− electron centers (PO3 ECs), these radiation-induced defects do not modify the glass emission as both non-irradiated and γ-ray-irradiated glasses exhibit similar emission spectra and decay times under optical and X-ray excitation. The emission peaks observed also correspond to the different interconfigurational 4f5d → 4f2 and intraconfigurational 4f2 transitions of Pr3+ ions which are neither oxidized nor reduced by irradiation. Our results show that Pr3+-doped APLF glass still maintains its characteristic fast decay time and that γ-ray irradiation does not affect the glass scintillation mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.