Abstract
Radiation reaction (RR) force plays an important role in gamma ray production in the interaction of ultraintense laser with relativistic counterpropagating electron at intensity 1022 W/cm2 and beyond. The relationship between emission spectrum and initial kinetic energy of electron at such intensities is yet to be clear experimentally. On the other hand, the energy from both the relativistic electron beam and laser pulse may be converted into the gamma rays. Therefore, the conversion efficiency of energy purely from laser pulse into gamma rays is of great interest. We present simulation results of an electron dynamics in strong laser field by taking into account the RR effects. We investigated how the RR effects influence the emission spectrum and photon number distribution for different laser condition. We showed that the peaks of emission spectra are suppressed if higher initial kinetic energy of electron interacts with long laser pulse duration. We then list the conversion efficiencies of laser pulse energy into gamma ray. We note that an electron with energy of 40 MeV would convert up to 80% of the total of electromagnetic work and initial kinetic energy of electron when interacting with 10 fs laser pulse at intensity 2×1023 W/cm2. For a bunch of electron with charge 1 nC would emit around 0.1 J of energy into gamma ray emission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.