Abstract

SUMMARY Novel multiband circular microstrip antennas (C-MSAs) with multiple half-ring slots are presented in this paper. Two antennafeeding systems, i.e. an embedded L-probe beneath the patch and a coplanar circular arc- shaped probe (T-probe), are used to feed the C-MSA with multiple half-ring slots. The embedded L-probe is used to excite the CMSA with a double-layer dielectric substrate due to its tremendous performance to provide a wideband impedance matching. The coplanar T-probe is proposed to realize an excellent multiband C-MSA in a single-layer structure. The C-MSA with four half-ring slots fed by the embedded Lprobe exhibits satisfactory radiation characteristics. Five frequencies with broadside radiation patterns and gains of at least 5.0 dBi are obtained. It is also confirmed by simulation that resonant frequency and gain can be easily controlled to meet the desired frequency requirements. Moreover, the C-MSA with three half-ring slots fed by the coplanar T-probe presents satisfactory performance over the four observed frequencies with good return losses (−10 dB reference). Broadside radiation patterns with acceptable cross-polarization level and gains in the range of 3.0–7.0 dBi are obtained. Couplings between the C-MSA and the coplanar T-probe have an important contribution to obtain good return losses. It can be controlled by adjusting the distance between them and the arc angle of the coplanar T-probe appropriately. Experiments of both types of antenna were conducted to verify the simulation results and good agreements are confirmed. Due to the performances, these two C-MSAs are considered to be an effective model as a

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.