Abstract

This paper covers two areas (a) the use of high energy radiation for the synthesis and improvement of polymer properties and (b) the formulation of radiation curable compounds for automotive/appliance wire applications and high voltage insulation. The first part discusses the use of gamma radiation for the bulk polymerization of ethylene and the properties of the polymer produced. The use of low dose radiation to increase polymer molecular weight and modify polydispersity is also described together with its projected operational cost. An update is provided of the cost savings that can be realized when using radiation crosslinked heavy duty film, which expands its applications, compared with noncrosslinked materials. The second section of the paper considers the advantages and disadvantages of radiation vs. peroxide curing of wire and cable compounds. The formulation of a radiation curable, automotive/appliance wire compound is discussed together with the interactions between the various ingredients; i.e., base resin, antioxidants, flame retardant filler, coupling agents, processing aids and radiation to achieve the desired product. In addition, the general property requirements of a radiation curable polyethylene for high voltage insulation are discussed; these include crosslinking efficiency, thermal stability, wet tree resistance and satisfactory dielectric properties. Preliminary data generated in the development of a 230KV radiation crosslinked polyethylene insulation are included.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call