Abstract

We describe an experiment achieving radiation pressure excitation and cooling of a mechanical mode in a cryogenic Fabry–Perot cavity with a micromechanical oscillator [micro-electro-mechanical systems (MEMS)] as end mirror. The response function to periodic modulations of the intracavity power provides an independent measurement of the effective modal mass allowing an accurate estimate of the mode temperature from the corresponding displacement noise spectrum. We also obtained optical cooling of the MEMS fundamental mode at 110 kHz from 11 to 4.4 K, limited only by the optical Finesse and the mechanical quality of the system. These results represent a step toward the observation of quantum optomechanical effects and motivate further experiments with improved performances of the MEMS samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.