Abstract
In future wireless communication networks at terahertz frequencies, the directivity and the beam profile of the emitters are highly relevant since no additional beam forming optics can be placed in free-space between the emitter and receiver. We investigated the radiation pattern and the polarization of broadband continuous-wave (cw) terahertz emitters experimentally and by numerical simulations between 100 GHz and 500 GHz. The emitters are indium phosphide (InP) photodiodes with attached planar antenna, mounted on a hyper-hemispherical silicon lens and integrated into a fiber-pigtailed module. As both packaging and material of the emitter was identical for all devices, similarities and differences can be directly linked to the antenna structure. We found that the feeding point structure that connects photodiode and antenna has a large influence on the radiation pattern. By optimizing the feeding point, we could reduce side lobes from -2 dB to -13 dB and narrow the 6dB beam angle from ±14° to ±9° at 300 GHz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.