Abstract

<para xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> We predict the scattering loss in rectangular high index-contrast waveguides, using a new variation of the classical approach of coupled-mode theory. The loss predicted by this three-dimensional (3-D) model is considerably larger than that calculated using previous treatments that approximate the true 3-D radiation modes with their two-dimensional counterparts. The 3-D radiation modes of the ideal waveguide are expanded in a series of cylindrical harmonics, and the coupling between the guided and radiation modes due to the sidewall perturbation is computed. The waveguide attenuation can then be calculated semianalytically. It is found that the dominant loss mechanism is radiation rather than reflection, and that the transverse electric polarization exhibits much larger attenuation than transverse magnetic polarization. The method also gives simple rules that can be used in the design of low-loss optical waveguides. The structural properties of sidewall roughness of an InGaAs/InP pedestal waveguide are measured using atomic force microscopy, and the measured attenuation is found to compare well with that predicted by the model. </para>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.