Abstract
This study presents a heat transfer model for a stationary fused silica rod heated by a CO2 laser. During laser heating, the effect of fused silica being modeled to be opaque or semitransparent to laser irradiation is studied. The radiative heat transfer caused by the emission of fused silica is modeled using the zonal method, and compared to the Rosseland diffusion approximation. The spectral dependence of the fused silica absorption coefficient in semitransparent wavelengths is approximated by a two-band model. The weighted-sum-of-gray-gas (WSGG) method is used to calculate the radiative source term. The governing equation with conduction and radiation heat transfer is solved by the finite-volume method. The importance of modeling the effects of laser energy penetration below the fused silica surface during heating, especially for small diameter fibers, is discussed. The importance of radiative heat transfer in fused silica is also discussed. Around 25 K in temperature difference is observed when the diffusion approximation is used in place of the zonal method to model the radiative transfer in fused silica.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.