Abstract
The Israeli tandem electrostatic accelerator FEL (EA-FEL), which is based on an electrostatic Van der Graaff accelerator was relocated to Ariel 3 years ago, and has now returned to operation under a new configuration. In the present FEL, the millimeter-wave radiation generated in the resonator is separated from the electron beam by means of a perforated Talbot effect reflector. A quasi-optic delivery system transmits the out-coupled power through a window in the pressurized gas accelerator tank into the measurement room (in the previous configuration, radiation was transmitted through the accelerator tubes with 40 dB attenuation). This makes it possible to transmit useful power out of the accelerator and into the user laboratories. After re-configuring the FEL electron gun and the e-beam transport optics and installing a two stage depressed collector, the e-beam current was raised to 2 A. This recently enabled us to measure both spontaneous and stimulated emissions of radiation in the newly configured FEL for the first time. The radiation at the W-band was measured and characterized. The results match the predictions of our earlier theoretical modeling and calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.